Human DJ-1 and its homologs are novel glyoxalases.
نویسندگان
چکیده
Human DJ-1 is a genetic cause of early-onset Parkinson's disease (PD), although its biochemical function is unknown. We report here that human DJ-1 and its homologs of the mouse and Caenorhabditis elegans are novel types of glyoxalase, converting glyoxal or methylglyoxal to glycolic or lactic acid, respectively, in the absence of glutathione. Purified DJ-1 proteins exhibit typical Michaelis-Menten kinetics, which were abolished completely in the mutants of essential catalytic residues, consisting of cysteine and glutamic acid. The presence of DJ-1 protected mouse embryonic fibroblast and dopaminergically derived SH-SY5Y cells from treatments of glyoxals. Likewise, C. elegans lacking cDJR-1.1, a DJ-1 homolog expressed primarily in the intestine, protected worms from glyoxal-induced death. Sub-lethal doses of glyoxals caused significant degeneration of the dopaminergic neurons in C. elegans lacking cDJR-1.2, another DJ-1 homolog expressed primarily in the head region, including neurons. Our findings that DJ-1 serves as scavengers for reactive carbonyl species may provide a new insight into the causation of PD.
منابع مشابه
A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans.
Methylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to d-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member ORF 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal s...
متن کاملProducts of the Parkinson's disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival
Parkinson's disease is associated with mitochondrial decline in dopaminergic neurons of the substantia nigra. One of the genes linked with the onset of Parkinson's disease, DJ-1/PARK7, belongs to a novel glyoxalase family and influences mitochondrial activity. It has been assumed that glyoxalases fulfill this task by detoxifying aggressive aldehyde by-products of metabolism. Here we show that s...
متن کاملRoles of Drosophila DJ-1 in Survival of Dopaminergic Neurons and Oxidative Stress
The loss of dopaminergic neurons in the substantia nigra is the pathological hallmark of Parkinson's disease (PD). While the etiology of sporadic PD remains elusive, an inherited form of early-onset familial PD is linked to mutations of DJ-1. To understand the biological function of DJ-1 and its relevance to the pathogenesis of PD, we investigated the function of DJ-1 using Drosophila. Drosophi...
متن کاملSchizosaccharomyces pombe Homologs of Human DJ-1 Are Stationary Phase-Associated Proteins That Are Involved in Autophagy and Oxidative Stress Resistance
The Parkinson's disease protein DJ-1 is involved in various cellular functions including detoxification of dicarbonyl compounds, autophagy and oxidative stress response. DJ-1 homologs are widely found in both prokaryotes and eukaryotes, constituting a superfamily of proteins that appear to be involved in stress response. Schizosaccharomyces pombe contains six DJ-1 homologs, designated Hsp3101-H...
متن کاملA Plant DJ-1 Homolog Is Essential for Arabidopsis thaliana Chloroplast Development
Protein superfamilies can exhibit considerable diversification of function among their members in various organisms. The DJ-1 superfamily is composed of proteins that are principally involved in stress response and are widely distributed in all kingdoms of life. The model flowering plant Arabidopsis thaliana contains three close homologs of animal DJ-1, all of which are tandem duplications of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 21 14 شماره
صفحات -
تاریخ انتشار 2012